
Distributed Sparse Support Vector Machine for Feature

Selection on High Dimensional Datasets

Xiaowei KUANG

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Abstract

Feature selection is very useful in reducing model complexity and gaining insights into data.

As practical data often come in high volume and high dimension which exceed the comput-

ing capabilities and storage limit of a single machine, distributed implementations of feature

selection algorithms are highly desirable. Incorporating an up-to-date feature selection algo-

rithm called Feature Generating Machine (FGM) and an efficient distributed system named

Husky, we propose a novel distributed implementation framework for feature selection in this

report. The input data are partitioned among different workers and the workers can work

jointly to solve model solutions with limited network communication. By cleverly caching

important data, our method can handle large-scale high dimensional problems.

1 Introduction

It has been estimated that as of 2012, about 2.5 exabytes (1018) of data are created each day,

and that number is doubling every 40 months or so [1]. This exponential growth of data in terms

of volume and dimension since the 21th century has spurred the development of feature selection

methods and distributed computing systems. In the big data era, linear SVM has been one of the

most popular tools for large-scale classification. Extensive efforts have also been put in applying

SVM for feature selection. While many of the SVM algorithms proposed have shown state-of-the-

art performance in certain applications, most of them are restricted to single machine training.

This motivates us to develop a distributed solution that is more scalable and cost-efficient.

1

In a Machine Learning setting, feature selection refers to the process of selecting a subset of rel-

evant features from the input data. Feature selection is useful in a number of ways [2]: First, it

helps us visualize and understand the data better. Second, it alleviates the curse of dimensionality

problem present in many real-world problems, which leads to a more accurate predictor. Third, as

a dimension reduction technique, it significantly reduces the size of the input data by eliminating

irrelevant features, which gives rise to faster and more cost-effective predictors in terms of time

complexity and space requirement. To name one concrete example, consider the text classification

problem: an input instance (document) lies in a feature space of dimension the size of the vo-

cabulary containing word frequency count, which can count to millions! Recently, many features

selection methods using SVM have been proposed. Many of them achieve the goal of feature

selection through sparsity regularization. Instead of using the l2-norm regularizer(‖w‖22), which

results in non-sparse solutions, regularizers such as l0-norm regularizer(‖w‖0) [3] and l1-norm

regularizer(‖w‖1) [4] are employed. While the above algorithms are good for enforcing sparsity in

the solutions, they are computationally more expensive than l2 regularization even after convex

relaxation. Besides sparse regularization, an effective wrapper feature selection method Recur-

sive Feature Elimination (SVM-RFE) was proposed [5], which recursively trains a classifier, ranks

all features according to some criteria and eliminates features that have lowest ranking. While

this method has achieved state of the art performance on gene selection, it is computationally

expensive and may even be infeasible for high dimensional problem. To address such a problem, a

Feature Generating Machine(FGM) method was proposed [6], which iteratively generates a subset

of most violated features and solve the resulting Multiple Kernel Learning (MKL) problem. We

will base our distributed support vector machine algorithms on the Feature Generating Machine

Algorithm in this report.

To deal with the challenges presented by the huge volume of data, many general purpose dis-

tributed computing systems such as Spark [7], Dryad [8] and Hadoop [9] were developed. These

systems allow programmers to express the application logic in simple coarse-grained primitives

like map and reduce, which simplifies programming for distributed algorithms. But these coarse-

grained programming paradigms often do not result in efficient program. For example, a MapRe-

duce program often has to dump the data to the distributed file system, load them into the main

memory, parse the data, do the computation, dump the data back to the distributed file system

and repeat the process again. As this process involves a lot of unnecessary disk IO, network

traffic and serialization/deserialization, the program becomes very inefficient. To address these

inefficiencies, programmers often need to resort to more sophisticated domain-specific languages

2

(DSLs), which raises development cost. This problem motivates the development of Husky, an effi-

cient and expressive distributed computing system designed to strike a better balance between the

efficiency and development cost problems mentioned above. There are several features that make

Husky attractive as a distributed computing framework. First, Husky is good for interactive data

analysis. User can easily perform exploratory data analysis on Husky by using scripting language.

Second, Husky is designed to cooperate with the Hadoop ecosystem. This makes Husky attractive

because HDFS and Hive are now the dominating big data systems in industry. Third, Husky pro-

vides an expressive and user-friendly Application Programming Interface (API). User only needs

to understand a few core concepts such as Object List, Channel, Aggregator and list execute to

write sophisticated and powerful distributed program. Fourth, Husky is fault-tolerant and easily

scalable. Machine failure and growth of computing cluster are handled seamlessly by the runtime

”Master” in Husky. Last but not least, Husky can easily outperform computing system that offers

coarse-grained primitives and is able to achieve similar or even better performance compared with

domain-specific systems[10].

In this report, we propose a distributed version of the FGM algorithm described in [11]. It itera-

tively generates a pool of violated sparse feature subsets and solves the resulting MKL problem.

Adapting the algorithm in [12] to our problem, we are able to divide the original MKL problem

into several MKL problems of smaller instances and solve them distributively using a simple and

efficient coordinate descent method [13]. The rest of this report is organized as follows. Sec-

tion 2 gives an introduction to SVM, Sparse SVM and Husky. Section 3 describe our algorithm

Distributed Sparse SVM. The last section gives a summary and remark of our algorithm.

2 Background

2.1 Support Vector Machine

Support Vector Machine (SVM) [14] is one of the most often used supervised learning algorithms

for pattern recognition. A SVM for binary classification aims to learn a separating hyperplane that

maximizes the margin between two classes of data. In a typical machine learning setting, given a

labeled training set {xi, yi}ni=1, where xi ∈ Rm is the m-dimensional input and yi ∈ {+1,−1}ni=1

is the output label, we learn a m-dimensional decision hyperplane f(x) = wTx that maximizes

the margin 1
‖w‖22

, or equivalently, minimizes the l2 norm ‖w‖22 of the normal of the hyperplane

3

such that all positive data lie on one side of the plane and all the negative data lie on the other

side of the hyperplane (as shown in Figure 1). Then the parameter w can be found by solving the

following optimization problem.

min
w

1

2
‖w‖22 s.t. yiw

Txi > 1, i = 1, . . . , n (1)

The inequality specified above constrains the hyperplane to pass through the origin. In order to

solve this problem, we can add a bias term b in the hyperplane by changing the input instance x

and parameter w as the following [13]:

xTi ← [xTi , 1] wT
i ← [wT

i , b] (2)

However, if the input data are not linearly separable, the constraints in equation (1) can not

all be satisfied. To tackle this hard margin problem, slack variables are introduced to loosen

the inequality constraints and we can reformulate the problem as a soft margin maximization

problem:

min
w

1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i s.t. yiw

Txi > 1− ξi, i = 1, . . . , n (3)

With ξi, we allow an input instance xi to violate the original hard margin constraint but penalize

such violations by adding a positive term C
2 ξ

2
i to the objective function. The parameter C is called

the slack trade off. A smaller C allows more points to be misclassified and a greater C forces the

margin to become ”harder”. The loss function we use here is called square hinge loss, taking the

form loss(w,xi, yi) = max(1−yiwTxi, 0)2. Another often used loss function in training a SVM is

hinge loss, which is in the form loss(w,xi, yi) = max(1−yiwTxi, 0). These two functions are used

because they are both convex functions, which is a desired property in an optimization problem.

In addition to being a linear classifier, SVM can also be used to model nonlinear relationship

by using the kernel trick. The idea stems from the fact that when formulated in its dual form

(see the next subsection), the objective function can be written as a linear combination of the

dot product 〈xi,xj〉, which can be viewed as the similarity between instance xi and instance xj

[15]. Therefore, we can replace xTi xj with a Kernel function K(xi,xj) = φ(xi)
Tφ(xj), where

φ : X → Z is a mapping from feature space X onto another feature space Z. Then a linear SVM

corresponds to the Kernel K(xi,xj) = xTi xj . One commonly used Kernel is the Gaussian Kernel

K(xi,xj) = exp(−γ‖xi−xj‖2). Since the Taylor expansion of a function allows us to indefinitely

4

Figure 1: Figure 1. The solid line in the middle is the hyperplane that separates the positive(+)
data points from the negative(-) data points. The circled points that lie on the dashed line are
called support vectors.

approximate a continuous function by adding high order polynomial term, with each polynomial

representing a new dimension, the Gaussian Kernel allows us to map our our data from the

original n-dimensional feature space onto a feature space of infinite dimension without explicitly

calculating the dot product in the infinite-dimensional space. One important consequence of this

mapping is that if the input data are not linearly separable in its original feature space, we can

always map it onto a feature space of higher dimension to make it separable by a hyperplane in

the higher dimensional feature space. But consideration must be given to input data with noisy

features, in which case such a method may not generalize well.

2.2 Sparse SVM

2.2.1 Primal and Dual formulation of Sparse SVM

Following the notation in [11], we denote A � B to be the elementwise product between two

vectors/matrices A and B. To obtain a sparse parameter w of SVM, a 0-1 control vector d =

[d1, · · · , dm]T ∈ D is introduced to control which features get selected. The decision hyperplane

thus becomes: f(x) = wTx = (w̃�d)Tx = w̃T (x�d), where D = {d|
∑m
j=1 6 B, dj ∈ {0, 1}, j =

1, · · · ,m} is the domain of d, and B controls the sparsity of d. Using square hinge loss, the

objective function of Sparse SVM can be formulated as:

min
d∈D

min
w̃,ξ

1

2
‖w̃‖22 +

C

2

n∑
i=1

ξ2
i s.t. yiw̃

T (xi � d) > 1− ξi, i = 1, · · · , n (4)

To derive its dual form, we introduce one Lagrange multiplier for each constraint. Let L(w̃, ξ,α) =

1
2‖w̃‖

2
2 + C

2

∑n
i=1 ξ

2
i −

∑n
i=1 αi(yiw̃

T (xi�d)−1 + ξi), where α = [α1, · · · , αn]T is a vector of dual

5

variables for the inequality constraints and α ∈ A,A = {α|αi > 0, i = 1, · · · , n}, it can be seen

that,

max
α∈A
L(w̃, ξ,α) =


∞ if some constraints are violated

1
2‖w̃‖

2
2 + C

2

∑n
i=1 ξ

2
i otherwise

If a parameter candidate w̃ violates some constraints, then L(w̃, ξ,α) = ∞ and such a solution

will not be chosen when we want to minimize over w̃. Hence (4) is equivalent to

min
d∈D

min
w̃,ξ

max
α∈A

1

2
‖w̃‖22 +

C

2

n∑
i=1

ξ2
i −

n∑
i=1

αi(yiw̃
T (xi � d)− 1 + ξi)

Since the maximum of the minimum of a function is always less than or equal to the minimum of

the maximum of the same function, we have

max
α∈A

min
w̃,ξ

1

2
‖w̃‖22+

C

2

n∑
i=1

ξ2
i−

n∑
i=1

αi(yiw̃
T (xi�d)−1+ξi) 6 min

w̃,ξ
max
α∈A

1

2
‖w̃‖22+

C

2

n∑
i=1

ξ2
i−

n∑
i=1

αi(yiw̃
T (xi�d)−1+ξi)

According to Lagrange Duality theory, the above inequality satisfies with equality and we can

solve (4) by solving the following:

min
d∈D

max
α∈A

min
w̃,ξ

1

2
‖w̃‖22 +

C

2

n∑
i=1

ξ2
i −

n∑
i=1

αi(yiw̃
T (xi � d)− 1 + ξi) (5)

Taking the above objective function with respect to w̃ and ξ, setting them to 0, we have

w̃ =

n∑
i=1

αiyi(xi � d) αi = Cξi, i = 1, · · · , n

Substitute the above back to (5), we get the dual form of the SSVM problem as follows. Notice

how the objective function is expressed as a linear combination of the dot product 〈xi,xj〉 as

mentioned in section 2.1.

min
d∈D

max
α∈A

−1

2
‖
n∑
i=1

αiyi(xi � d)‖2 − 1

2C
αTα+ eTα (6)

According to the convex relaxation in [11], (6) can be written as a MKL problem

max
µ∈M

min
α∈A

fD(α,µ) =
1

2
αTY (

∑
dt∈D

µtXtX
T
t +

1

C
I)Y α− eTα (7)

6

Or equivalently,

max
µ∈M

min
α∈A

fD(α,µ) =
1

2
αT Q̄α− eTα

where M = {µ|eTµ = 1,µ > 0}, Q̄ = Y (
∑
dt∈D µtXtX

T
t + 1

C I)Y , Xt = [x1 � dt, · · · ,xn � dt]T

and Y is a diagonal matrix such that Yii = yi.

2.2.2 Cutting Plane Algorithm

The overall algorithm for solving (7) is described in Algorithm 1 [11]. We denote the subset of

constraints by C ⊂ D. First the vector of dual variables α is initialized to 1
n1. We then find the

most violated d̂ ∈ D and initialize the working set C = {d̂}. To solve the MKL problem, we use

an efficient method called SimpleMKL[16]. We fix µ and run SVM solver to update α one step.

Then we fix α and update µ one step. This iterative updating procedure of α and µ is repeated

until the MKL problem converges. Then the next most violated constraint d is calculated and

added to C. This process is repeated until the termination criterion is met. To find the most

violated constraint, the constraint that has the highest feature score given the current values of

α, we denote cj =
∑n
i=1 αiyixij and sort the cjs in descending order and set the first B numbers

corresponding to dj to 1 and the rests to 0.

2.2.3 Prediction

When the algorithm converges, the decision function can be obtained by f(x) =
∑
dt∈D

∑n
i=1 αiyi(xi�

dt)Tx =
∑n
i=1 αiyi(xi � d̃)Tx, where d̃ =

∑
dt∈D µtd

t

Algorithm 1 The cutting plane algorithm for FGM

1: Initialize α = 1
n1. Find the most violated d̂, and set C = {d̂}

2: Run MKL solver to solve for α and µ
3: Find the most violated d̂ and set C = C ∪ d̂
4: Repeat step 2-4 until convergence

2.3 Simple MKL

To solve Multiple Kernel Learning probelm like problem7, an efficient algorithm called SimpleMKL

[16] has been proposed. Formally, the Multiple Kernel Learning problem corresponds to the

7

following primal optimization problem:

minimize
fm,b,ξ,d

1

2

∑
m

1

dm
||fm||2Hm

+ C

n∑
i=1

ξi

subject to yi(
∑
m

fm(xi) + b) ≥ 1− ξi, ∀i

ξi ≥ 0 ∀i∑
m

dm = 1, dm ≥ 0, ∀m

whereHm defines a space that is associated with a particular kernel Km and dm can be understood

to be the weight of a particular kernel in the decision function. To solve the above, a constrained

optimization problem is proposed:

minimize
d

J(d) subject to

M∑
m=1

dm = 1, dm ≥ 0 m = 1, · · · ,M (8)

where J(d) is the optimal value of the following SVM problem

minimize
fm,b,ξ

1

2

∑
m

1

dm
||fm||2Hm

+ C

n∑
i=1

ξi

subject to yi(
∑
m

fm(xi) + b) ≥ 1− ξi, ∀i

ξi ≥ 0 ∀i

(9)

Thus the above can be solved using the following iterative procedure. First a SVM solver is invoked

to solve the SVM problem (9), then reduced gradient method is used to find a feasible descent

direction for d, followed by a line search for the optimal step size. The above iterative process

is repeated until the duality gap of the Multiple Kernel Learning problem is within a tolerable

threshold. Note in order to ensure the equality constraint
∑M
m=1 dm = 1 and the positivity

constraint dm ≥ 0, reduced gradient method is used instead of a normal gradient method. In

particular, the reduced gradient of J(d) denoted by ∇redJ has the following components:

[∇redJ]m = (
∂J

∂dm
− ∂J

du
) ∀m 6= u

[∇redJ]u =
∑
m 6=u

(− ∂J

∂dm
+

∂J

∂du
)

where u can be any one of 1, · · · ,M . Since γ
∑
m 6=u

∂J
∂dm
− ∂J

∂du
+ γ

∑
m 6=u−

∂J
∂dm

+ ∂J
∂du

= 0 for all

possible step size γ, the equality constraint is satisfied. To ensure that the positivity constraint is

8

preserved, a feasible descent direction D can be found by projecting the reduced gradient to the

feasible domain:

Dm =


0, if dm = 0 and ∂J

∂dm
− ∂J

∂du
≥ 0

− ∂J
∂dm

+ ∂J
∂du

, if dm > 0and m 6= u∑
v 6=u,dv≥0(∂J∂dv −

∂J
∂du

) if m = u

(10)

The above simply says that if an entry dm is equal to 0 and its reduced gradient is non-negative

(negative of reduced gradient is positive), then we need to project its descent direction to be

0 indicating that it is already at its optimum. Otherwise we set its descent direction to be its

reduced gradient. With the descent direction available, one can perform a simple step size search

to find the optimal step size and update d. A detailed algorithm adapted to the setting of this

report will be shown in section 3.

2.4 Core Concepts in Husky

Husky follows a master-slave architecture. One Husky cluster is made up of a master, which is

responsible for load balancing and coordination between workers, and multiple workers which can

reside in one or multiple machines. Below is a description of the four most important concepts in

Husky.

Object List is the primary data abstraction in Husky, where user-defined objects can be stored.

In a distributed setting, Object List is a distributed abstraction of objects. When writing the

program, users can treat the Object List as a single array of object when in fact it is distributed

among different workers, with each worker storing a portion of the list. This is a very useful

abstraction as users can write a distributed program as if he/she is writing a single machine

program.

Channel is another important concept in Husky. It defines how Object Lists communicate with

each other. Messages, which can be any user-defined data types, are sent through channels to a

distant location using the push function and are received through channels by a distant target

using the get function.

Aggregator is a powerful allreduce like object designed for easily aggregating values from executors

and broadcasting the aggregated values back to the executors.

9

list execute is the most important function provided by Husky. Synchronization of the above

three concepts across different workers are done through list execute. Consider the following C++

example

f o r (i n t i = 0 ; i < o b j L i s t . s i z e () ; i++)

std : : cout << o b j L i s t [i] . id () << std : : endl ;

The piece of code above can be easily expressed in a distributed setting in Husky as follows.

// o b j e c t s in o b j L i s t r e s i d e in d i f f e r e n t workers

l i s t e x e c u t e (ob jL i s t , [] (Obj& obj) {

log msg (obj . id ()) ;

}) ;

As can be seen, even though the objects are distributed among different workers, we can use

list execute to easily access the objects as if we are writing a simple for-loop. And most importantly,

we have fine grained control at the level of objects instead of a coarse grained control at the level

of tables like that provided by Spark[17] and Hive[18].

3 Distributed Feature Generating Machine

In this section, we present a distributed implementation framework for the Sparse SVM algorithm.

Building on the communication pattern of Husky, we carefully investigate the mathematical rela-

tionship between different parameters and design a scheme that can coordinate different workers

to jointly solve the Sparse SVM problem with low communication cost. We start by distribut-

ing the input data {xi, yi}ni=1 among K workers. To make it clear, we introduce the following

notation: Instances in machine k are denoted as {(xi, yi)}i∈Jk where Jk are disjoint sets such

that ∪Kk=1Jk = {1, · · · , n}. P(α) ≡ [−α1,∞] × · · · × [−αn,∞] is the feasible domain of α.

‖u‖2A ≡ uTAu for u ∈ Rt and A ∈ Rt×t. vJk denotes the sub-vector of v that contains the

coordinates in Jk and similarly for AJk,Jm .

3.1 Finding the Most Violated Constraints

Finding the most violated constraints involves finding the constraint d̂ that yields the largest

objective value in (6), which can be expressed as a function of d̂: 1
2

∑m
j=1(

∑n
i=1 αiyixij)

2dj =

10

1
2

∑m
j=1 c

2
jdj , where cj =

∑n
i=1 αiyixij . Hence the most violated constraint corresponds to the set

of djs that has the B-largest cjs. We can calculate cj as

cj =

K⊕
k=1

XT
Jk,j

YJkαJk (11)

where XJk,j stands for the vector obtained by taking the (i, j) entry of the input matrix X with

i ∈ Jk. The symbol
⊕

represent the operation of receiving the information from all workers and

broadcasting the results back to all workers. In Husky, this can be done using Aggregator, which

implements the allreduce functionality of broadcasting the values to all the workers and collecting

the aggregated values from all the workers. Hence, each worker will update cj using the input

data available in its local storage and receive a global version of cj . With the availability of cj ,

each worker will sort the cj in descending order and set the first B numbers corresponding to

dj to 1 and the rests to 0. Then the new generated d̂ is added to the constraint set C. Notice

because each machine has the same copy of cj , the resulting d̂ is also the same for all workers,

which obviates the need for a centralized master to send the new d̂ to every other workers.

3.2 Solving the MKL Problem

As mentioned in section 2, we use SimpleMKL to solve the MKL problem (7). A detailed descrip-

tion of the algorithm is given in Algorithm 2. where Kt(xi,xj) = (xi�dt)T (xj�dt) is the kernel

Algorithm 2 The SimpleMKL algorithm

1: Set µt = 1
T for T = 1, · · · , T

2: while stopping criterion not met do
3: Compute J(µ) using a SVM solver with kernel K =

∑
t µtKt

4: Compute ∂J
∂µt

forµ = 1, · · · , T and descent direction D

5: Set u = argmax µt
t

, J ′ = 0, µ′ = µ, D′ = D while J ′ < J(µ) do

6: µ = µ′, D = D′

7: v = argmin
{t|Dt<0}

− µt

Dt
, γmax = − µv

Dv

8: µ′ = µ+ γmaxD, D′u = Du +Dv, D
′
v = 0 // normalization

9: Compute J ′ using a SVM with kernel K =
∑
t µtKt

10: end while
11: line search along D for γ ∈ [0, γmax]
12: µ← µ+ γD
13: end while

corresponding to the t-th control variable. As described in the SimpleMKL algorithm, we need a

SVM solver to solve for α. In the following sections, we describe a distributed SVM solver called

Box constrained Quadratic Optimization algorithm[12], a single machine SVM solver called Dual

11

Coordinate Descent algorithm[13] and adapt these two algorithms to our setting.

3.2.1 Updating α

The main computations in solving (7) are the computation of the Kernel Matrix
∑T
t=1 µtXtX

T
t ,

which is easily computed in a single machine setting since all input instances are easily available.

However, in a distributed setting, computing the exact Kernel matrix is not easy. One naive

approach is that each worker can have in their local storage all the input instances {xi, yi}ni=1.

Another approach is that all machines receive the necessary data from other machines by means

of communication. It is easily seen that the first method will hit a bottle neck when the volume of

the input data gets larger and larger and the second method will incur too much communication

cost. Therefore, we consider an approximation of the Kernel matrix
∑T
t=1 µtXtX

T
t in each local

machine using only the input data available locally.

Computing the Update direction: The algorithm starts with an initial point α0 for (7) and

iteratively generates a sequence of solutions {αl}∞l=0 until convergence. At the l-th iteration, we

update the current αl by

αl+1 = αl + ηl∆αl (12)

where ηl ∈ R is the step size and ∆αl ∈ Rn is the update direction. To compute ∆αl, let

d ∈ P(αl) be any direction in the n-dimensional space (d not to be confused with the control

variable), according to Taylor series expansion, we have with µ fixed,

fD(αl + d,µ) = fD(αl,µ) +∇fD(αl,µ)Td+
1

2
dTHd (13)

where H = Q̃+ 1
C I and

Q̃i,j =


Qi,j if i ∈ Jk and j ∈ Jk for some k

0 otherwise

where Q = Y (
∑
dt∈D µtXtX

T
t)Y and H is a symmetric, block-diagonal matrix with K blocks,

where the k-th block is

HJk = YJk(

T∑
t=1

µtXt,JkX
T
t,Jk

+
1

C
I)YJk

Then in order to minimize fD(αl,µ), we find an update direction d such that (13) is minimized,

12

which results in the following problem

∆αl = argmin
d∈P(αl)

∇fD(αl,µ)Td+
1

2
dTHd (14)

Since each machine have some input instances available in their local storage, they each can solve

a part of ∆αl locally

∆αlJk = argmin
dJk
∈P(αl)Jk

∇fD(αl,µ)TJkdJk +
1

2
‖dJk‖

2
HJk

(15)

We can calculate ∇fD(αl,µ)Jk as follows

∇fD(αl,µ)Jk = YJkXJkw
l +

1

C
αlJk − e

where wl can be obtained by gathering information from all workers.

wl =

K⊕
k=1

∑
dt∈D

µtX
T
t,Jk

YJkα
l
Jk

(16)

or alternatively,

∇fD(αl,µ)Jk =

T∑
t=1

µtYJkXt,Jkwt +
1

C
αlJk − e

wl =

T∑
t=1

µtw
l
t (17)

where wt =
∑K
k=1X

T
t,Jk

YJkα
l
Jk

is the weight vector associated with the t-th kernel. In this

report, we will take the second approach of computing wl. In fact this is a key step of reducing

the communication cost and we will discuss the rationale for choosing this method later in the

end of section 3.

As with (11), wl can also be maintained in local storage of each worker using Aggregator. Notice

with ∇fD(αl,µ)Jk and HJk available, (11) is in the same form as a standard SVM dual problem,

with α, Q̄, −e and P(0) replaced by dJk , HJk , ∇fD(αl,µ)Jk and P(αl)Jk respectively. We

describe the dual coordinate descent method for solving (15) in the below.

Algorithm for solving (15) locally: For SVM problem in which the bias term b is not ap-

pended at the end of the decision hyperplane parameter w as in equation (2), a linear constraint∑n
i=1 αiyi = 0 will arise when deriving the dual form. This linear constraint forces any optimiza-

tion method for the dual problem to update at least two variables at a time. For such kind of

13

problem, the Sequential Minimal Optimization (SMO) method [19] is an often-used solution. But

in our case since we we do not have this linear constraint, we are able to optimize α one variable

at a time, which leads us to a simple dual coordinate descent method [13]. For ease of notation,

we rewrite (15) as the following

min
γ∈F

h(γ) = βTγ +
1

2
γTAγ (18)

where dJk , P(αl)Jk , ∇fD(αl,µ)Jk and HJk are replaced with γ, F , β and A respectively. Since

we are dealing with SVM with square hinge loss, P(αl)Jk only has lower bound. Let Fi = −αi, i =

1, · · · , |Jk| be the lower bound of the i-th α in Jk. Because we do not have the equality constraint,

we can update α one variable at a time, suppose we are updating the i-th α, (18) becomes

min
d
h(γ + dei) ≡ ∇ih(γ)d+

1

2
Aiid

2 + const (19)

which is a quadratic function of d, where d is a scalar, ∇ih is the i-th component of the gradient

∇h. Since the variable γ is constrained by a feasible set F with lower bound, we need to project

the gradient to a feasible direction when optimizing γ. We only need to consider two cases: When

γi = Fi and ∇ih(γ) > 0, we can not further decrease γi and have to clip ∇ih(γ) to 0. When

γi = Fi and ∇ih(γ) 6 0, we can move in the negative direction of the gradient to decrease (19).

Denote the i-th component of the projected gradient as ∇Pi h(γ), we have

∇Pi h(γ) =


∇ih(γ) if Fi < γi

min(0,∇ih(γ)) if Fi = γi

where ∇ih(γ) can be computed as

∇ih(γ) = (Aγ)i + βi

or equivalently,

∇ih(γ) = yiκ
Txi + βi +

1

C
γi = yi

T∑
t=1

κTt xt,i + βi +
1

C
γi (20)

where

κ =

T∑
t=1

µtX
T
t,Jk

YJkγ, κt = µtX
T
t,Jk

YJkγ, xt,i = xi � dt

The above calculation of ∇ih(γ) using (20) is only valid in linear SVM where the kernel K(xi,xj)

is simply the dot product 〈xi,xj〉. By computing ∇ih(γ) in this way and caching κt, we have

14

avoided storing the dense kernel matrix A in the memory, which is more practical. If the projected

gradient is 0, then (19) is already at its optimum. If not, we need to update γi and clip it to

the feasible set. The algorithm is described in Algorithm 2. The general idea is that while γ is

not optimal, we loop over all its coordinate entries and try to optimize them with respect to the

objective function.

Algorithm 3 Dual Coordinate Descent Method

1: Given the initial value and feasible set of γ, compute κt = µtX
T
t,Jk

YJkγ, t = 1, · · · , T
2: For i = 1, · · · , |γ|
3: ∇ih(γ) = yi

∑T
t=1 κ

T
t xt,i + βi + 1

C γi
4: PG← ∇Pi h(γ)
5: If PG 6= 0
6: γ̄i ← γi
7: γi ← max(γi − ∇ih(γ)

Aii
,Fi)

8: κt ← κt +
∑T
t=1 µt(γi − γ̄i)yixt,i, t = 1, · · · , T

9: While γ is not optimal, go to step 2

Computing the Step Size: According to [12], the step size ηl can be computed as the follow-

ing

ηl = min((ηl)?, min
16i6n

λi) (21)

where

(ηl)? =
−∇fD(αl,µ)∆αl

(∆αl)Q̄∆αl

λi =


−αl

i

∆αl
i

if ∆αli < 0,

∞ if ∆αli > 0.

The parameters needed for computing ηl can be computed from

∆wl
t =

K⊕
k=1

XT
t,Jk

YJk∆αlJk , t = 1, · · · , T

−∇fD(αl,µ)∆αl =

T∑
t=1

(wl
t)
T∆wl

t +
1

C

K⊕
k=1

(αlJk)T∆αlJk −
K⊕
k=1

eT∆αlJk

(∆αl)T Q̄∆αl =

T∑
t=1

‖∆wl
t‖

2
+

1

C

K⊕
k=1

‖∆αlJk‖
2

To compute ηl on Husky, we use Aggregator and we use Parameter Server to compute ∆wt, t =

1, · · · , T . All the workers can then individually compute the step size and do the updates using (12)

because every worker sees the same value of the parameters in the Aggregator and the Parameter

15

Server.

Convergence of α: With the availability of the new α, all the workers then check if α has

already been optimized by comparing the primal objective value with the dual objective value.

Computing the primal objective value involves iterating all the input instances once, which is

expensive in a single machine setting but this problem is greatly alleviated in a distributed setting.

If the duality gap is smaller than a pre-determined threshold, then the problem of updating α is

solved. If not, all the workers will continue to optimize α. The algorithm is described in Algorithm

4.

Algorithm 4 Box-constrained Quadratic Optimization Algorithm

1: l← 0, given α0, computes w0
t , t = 1, · · · , T

2: while αl is not optimal:
3: Obtain ∆αl by distributively solving (15) on K workers in parallel

4: compute ∆wl
t =

⊕K
k=1X

T
t,Jk

YJk∆αlJk , t = 1, · · · , T
5: compute ∇fD(αl,µ)∆αl and (∆αl)Q̄∆αl

6: obtain ηl by (13)
7: αl+1 ← αl + ηl∆αl,wl+1

t ← wl
t + ηl∆wl

t

8: l← l + 1.

3.2.2 Updating µ

Once α is solved, as described in 2, we first obtain the gradient ∂J
∂µt

= − 1
2α

T (Y XtX
T
t Y)α =

− 1
2w

T
t wt and project this gradient to obtain a feasible descent direction D. Then we use a

simple binary search procedure to sample the objective values using half the maximum step size

γmax

2 and repeat this procedure until the step size to be applied is smaller than a pre-determined

threshold.

3.2.3 Convergence of SimpleMKL

Once µ has been updated, we test whether the duality gap of the MKL problem is small enough.

In particular, the duality gap is measured by:

max
t
wT
t wt −

T∑
t=1

µtw
T
t wt ≤ ε

16

3.3 Convergence of Distributed Feature Generating Machine

Once SimpleMKL converges, we find a new violated constraint d̂ using (11). With this new d̂,

we first check if it is in the constraint set C. If yes, then the algorithm has converged and we

can stop. If not, we add d̂ to the constraint set C and repeat the above procedure for solving the

MKL problem. During implementation, other stopping criteria can also be used, for example, one

can measure the relative difference between the current MKL objective value and the last MKL

objective value.

3.4 Complexity

Let n be the number of input instances, m be the number of features in an instance, l be the

average number of non-zero elements in each instance, K be the number of workers in a cluster and

B be the number of non-zero entries in each kernel, which typically is set to {2, 5, 10, 20, 50, 100}, T

be the cardinality of the violated constraints set D (According to [11], a maximum of 10 iterations

are enough for Algorithm 1 to converge, which means T is a relatively small number). Since the

primary objective of this algorithm is to deal with high dimensional problems, which typically

has hundreds of thousands or even millions of features, we assume in this section l >> TB. We

discuss in this section about the complexity of this algorithm in lieu of the implementation choices

that we mentioned in section 3.2.1 about how to compute wl. In particular, we will focus on how

different implementations affect the complexity of the algorithms in the Dual Coordinate Descent

part and the communication part.

3.4.1 Implementation scheme 1: Do not cache xi � d

If xi�d is not cached, we face a hurdle when computing
∑T
t=1 µtα

TY XtX
T
t Yα. But the feature

extraction operator ”�” has an interesting property: (xi � d)T (xj � d) = xTi (xj � d), which is

a result of the fact that elements in d can either be 0 or 1. This property allows us to factor

17

∑T
t=1 µtα

TY XtX
T
t Yα as the following:

T∑
t=1

µtα
TY XtX

T
t Yα =

T∑
t=1

µt
∑
i

∑
j

αiαjyiyj(xi � dt)T (xj � dt)

=

T∑
t=1

µt
∑
i

∑
j

αiαjyiyjx
T
i (xj � dt)

=

T∑
t=1

µt(
∑
i

αiyix)T ((
∑
j

αjyjxj)� dt)

= (
∑
i

αiyixi)
T ((

∑
j

αjyjxj)� (

T∑
t=1

µtdt))

= wT (w � d̃)

where w =
∑
i αiyixi and d̃ =

∑T
t=1 µtdt can be cached to speed up the algorithm.

3.4.2 Implementation scheme 2: Cache xi � d

If xi � d is cached, then inside the SVM solver, we can treat it as if we were solving T SVM

problems and each one of the SVM problem is associated with a particular kernel Kt(xi,xj) =

(xi � dt)T (xj � dt). And for each one of these problems we will train a weight vector wt. Then

the complete weight vector w is just the sum of all these T weight vectors, weighted by µt.

3.4.3 Time Complexity

Implementation Scheme 1: Using the implementation scheme 1, d̃ will be a dense vector

of size m where each dt is only a vector of size B and B << m. This also means that w will

also be a dense vector of size m. In each Dual Coordinate Descent iteration, we update w with

w ← w + (αi − ᾱi)yi(xi � d̃) Therefore, each inner iteration of Dual Coordinate Descent algo-

rithm will need approximately O(nlK) operations. After local αJk is solved, we need an allreduce

step to synchronize all the workers. In this scheme, we need to synchronize w and several scalar

quantities, resulting in a communication cost of O(m). Notice the use of sparse representation

will not help here because w will be dense vector of size m.

Implementation Scheme 2: Using the implementation scheme 2, we need an extra step

of caching the kernel each time we add a new control variable dt, which results in a cost of

O(n(B+l)
K). For the representation of wt, we can store wt using a sparse representation because

18

we have the information about dt, which tells us exactly which features will likely be non-zero.

Since each instance xi will have on-average l non-zero elements. xi � dt will have on-average

l
mB non-zero elements. Therefore, each iteration of Dual Coordinate Descent method will need

approximately O(l
m

n
KTB) operations. And synchronizing wt, t = 1 · · · , T has a communication

cost of O(TB). We thus obtain a speed up of O(m
TB). Thus we managed to cut down the running

time cost and the communication cost dramatically. Notice in a lot of sense this algorithm is

independent of the number of features of the input data because all we are interested in are TB

number of useful features. Since we adopt a scheme that caches x�d, we reduce the original high

dimensional problem to a low dimensional problem with dimension equal to TB during runtime.

Analysis for both Schemes: The above analysis mainly focuses on Dual Coordinate De-

scent method and the communication in the Box constrained Quadratic Optimization method.

Now we analyze other aspects of the algorithm. In a distributed setting, when finding the most

violated constraint, we need to synchronize the weight vectors w for all the features, which lead

to a communication cost of O(m). When we are dealing with high dimensional datasets, this is a

very expensive step. And this step becomes more expensive as we increase the number of workers

in the cluster. But luckily we do not need to do this step very often as T ranges from 1 to 20. It is

proven in [12] that our distributed SVM solver Box constrained Quadratic Optimization method

has linear convergence rate. As for SimpleMKL, according to our experiment, typically each it-

eration composes of 2 search calls for descent direction and 4 search calls for step size. Although

this may seem very expensive because for each call of descent direction search or step size search

we need to invoke the SVM solver, we can do more caching and initialize the solver with previous

values of α to speed up the algorithm. In summary, our algorithm takes advantage of the 0-1

control variable and caching to reduce the a high dimensional problem into a low dimensional

one, thus enabling our algorithm to handle data of ultra-high dimension. In addition, we take

advantage of a distributed computing framework to scale up our algorithm in the presence of input

data with huge volume of input instances.

3.4.4 Space Complexity

Implementation Scheme 1: The space requirement of Scheme 1 is only O(nlK)

Implementation Scheme 2: The space requirement of Scheme 2 is O(
nl+n l

mTB

K), which is

not too worse than Scheme 1 considering that TB is a relatively small number. Besides, one of

19

the main advantages of a distributed algorithms is that we have more memory to spare and we can

always add more machines to scale up the total memory available in the cluster. Therefore, we are

able to use the nature of a distributed algorithm to cancel out the potential drawbacks caused by

caching. In summary, this algorithm is computationally efficient as the Box constrained Quadratic

Optimization method has linear convergence rate[12] and each iteration of the algorithms involves

only tens of SVM solver call.

4 Experiments

In this section, we evaluate the performance of the single machine FGM algorithm and our dis-

tributed FGM algorithm on two synthetic dataset and a collection of real world datasets.

4.1 Datasets

4.1.1 Synthetic Datasets

The synthetic datasets consist of one small dataset (two variants) and one large dataset. Both

datasets are binary classification problems with the ground truth known.

SYN-SMALL For the small dataset, we generate the first variant with 10,000 samples and 200

features with each value initialized with a uniform distribution U(−1, 1) and a sparsity ratio

of 15%. A ground truth weight vector w is then generated with 200 features with each value

initialized with a uniform distribution U(−1, 1) and sparsity ration of 15%. The dot product

〈w,x〉 is then used to generate the label yi ∈ {−1,+1}. We call this dataset SYN-SMALL.

SYN-SMALL-HIGH-DIM Another variant of the small dataset is generated by appending

19800 irrelevant features to every instances in the first variant with each value initialized with

a uniform distribution U(−1, 1) and a sparsity ratio of 15%. We call this dataset SYN-SMALL-

HIGH-DIM. Ideally, a feature selection algorithm should be able to recover the relevant features

from the first 200 features.

SYN-LARGE The second synthetic dataset is generated with the same setting as the first

synthetic dataset except the second one is generated with 1,000,000 samples and 200 features. We

call this dataset SYN-LARGE.

20

4.1.2 Real-World Datasets

The real-world datasets consist of two small datasets and two large datasets. All these four

datasets are from the LIBSVM[20] website without further pre-processing. The two small datasets,

BREAST-CANCER and LEUKEMIA are insufficient in the amount of instances. For the

BREAST-CANCER dataset, we first merge the train set and the test set together and then

randomly split them into two datasets of equal size and perform our experiment several times. For

the RCV1.BINARY dataset, we also randomly split the whole dataset into two dataset of equal

size. The URL dataset[21] consists of 120 days of URL data used for detecting malicious URL.

Since the features are engineered from host-based features, lexical features and other real-valued

features using the bag of words model, the number of features goes up to millions! We randomly

shuffle the 120 days of data and split them into three datasets of small, large and extra large

sizes respectively with details described in table1.

Table 1: Datasets used in the experiments

Dataset # Training Points # Testing Points # Features

SYN-SMALL 10,000 10,000 200
SYN-SMALL-HIGH-DIM 10,000 10,000 20,000

BREAST-CANCER 21 21 7129
LEUKEMIA 38 34 7129
SYN-LARGE 1,000,000 10,000 10,000

RCV1.BINARY 338,700 338,699 47,236
URL-SMALL 159,745 159,740 3,231,961
URL-LARGE 958,460 479,220 3,231,961
URL-EXTRA 1,437,680 479,220 3,231,961

4.2 Experimental Set Up

In our experiments, comparisons are conducted among single machine FGM algorithm and dis-

tributed FGM algorithms. We denote distributed FGM run with K workers as DFGM-K. Dual

Coordinate Descent SVM algorithm, denoted as DCD-SVM and Box constrained Quadratic Opti-

mization SVM algorithm, denoted as BQO-SVM, from the LIBlinear library [22] serve as baselines,

which select all features for classification. In all our experiments, the parameter C for SVM is set

to 1 and the loss function for SVM is set to l2-loss.

21

4.3 Experiments on small datasets

To verify the correctness of our algorithms, two synthetic experiments are performed first. These

two synthetic datasets share the same ground truth weight vector w, with only 29 non-zero entries

among the first 200 entries. As seen in Figure 2(a), as the number of kernels (number of selected

features) increases, the testing accuracies of both FGM and DFGM increase and converge to

the same testing accuracies as DCD-SVM and BQO-SVM when the number of kernels reaches

6 (number of selected features ≥ 29 because B = 5). From Figure 2(b), we can see that both

FGM and DFGM successfully selects the relevant features among a pool of features mixed with a

large number of irrelevant features when DCD-SVM and BQO-SVM suffers from giving weights

to these irrelevant features and generalize poorly on the testing set. These two pictures show that

our algorithm is effective as a feature selection algorithm in selecting useful features among noisy

irrelevant features. We summarize the testing accuracies of the methods that we are interested in

on both the synthetic small datasets and real-world small datasets in table 2. This table mainly

serves to show the effectiveness of our algorithm in selecting useful features. As the primary

purpose of this report is to propose a distributed algorithm that can scale in the presence of large

scale high dimensional datasets, we focus on the next section, where we perform experiments on

large datasets to show the scalability of our algorithm.

(a) Testing accuracy (b) Testing accuracy

Figure 2: Testing accuracies on small synthetic datasets

4.4 Experiments on large datasets

In this subsection, we show the scalability of our algorithm first by comparing the performances

of DFGM running on different number of worker machines with the performance of FGM on

SYN-DATA-LARGE, RCV1.BINARY and URL-SMALL datasets. We then compare the

22

Table 2: Testing accuracies of various algorithms on small datasets

DATA SETS
DCD-SVM BQO-SVM FGM DFGM

B

SYN-DATA-SMALL
0.9809 0.9761 2 0.9618 0.9767
0.9809 0.9761 5 0.9686 0.9831
0.9809 0.9761 10 0.9850 0.9807

SYN-DATA-SMALL-HIGH
0.6550 0.6559 2 0.9618 0.9772
0.6550 0.6559 5 0.9816 0.9784
0.6550 0.6559 10 0.9704 0.9661

BREAST-CANCER

0.8095 0.8095 2 0.7619 0.8095
0.8095 0.8095 5 0.8095 0.8095
0.8095 0.8095 10 0.7619 0.7619
0.8095 0.8095 20 0.8571 0.9048

LEUKEMIA

0.7941 0.7941 2 0.9412 0.9412
0.7941 0.7941 5 0.9412 1.0000
0.7941 0.7941 10 0.9706 0.9706
0.7941 0.7941 20 0.9412 0.9706

performances among DFGM running on different number of worker machines on URL-LARGE

and URL-EXTRA datasets. We separate the experiments into these two parts because FGM

can only run on single machine, which makes it infeasible for very large datasets with millions of

samples.

Figure 3: SYN-DATA-LARGE Figure 4: RCV1.BINARY Figure 5: URL-SMALL

Figure 6: Testing accuracies on large datasets

4.4.1 FGM v.s. DFGM-K

Figure 3 summarizes the testing accuracies of various methods on the three large datasets re-

spectively. Figure 7-9 summarizes the total running time and the speedup of DFGM compared

to FGM. Finally, table 3 gives detailed information about the training time and communication

time on the URL datasets. There are two simple observations that can be made from Figure 7-9.

First, as expected, the training time reduces as we increase the number of worker machines in

our cluster, which is what we expect of a distributed algorithm. Second, the speedup resulted by

23

Figure 7: URL-SMALL

Figure 8: RCV1.BINARY

24

Figure 9: SYN-DATA-LARGE

increasing the number of worker machine is not linear but sub-linear.

Table 3: Training time and communication time on URL datasets

DATA SETS DFGM-K training time communication time communication time
training time

URL-SMALL

DFGM-1 1978.68 0 0%
DFGM-3 786.40 96.35 12.25%
DFGM-6 622.62 167.00 26.66%
DFGM-10 649.45 256.58 39.51%

URL-LARGE
DFGM-5 1046.45 33.91 3.24%
DFGM-10 707.76 55.14 7.79%
DFGM-15 564.70 79.06 14.00%

URL-EXTRA
DFGM-5 2044.01 40.42 1.98%
DFGM-10 1302.82 67.15 5.15%
DFGM-15 969.79 92.68 9.57%

4.4.2 Comparisons among DFGM-K

Figure 10 shows our experiments of running 5, 10, 15 and 20 worker machines on URL-LARGE

and URL-EXTRA respectively. This experiment is conducted mainly to investigate the scalabil-

ity of our distributed algorithms in the presence of large amount of data. As shown in the figure,

having a larger dataset (URL-EXTRA approximately 1.5 times larger than URL-LARGE) that

is still within the capacity of the cluster does make the speed up curve steeper, indicating that the

algorithm can scale in the presence of larger amount of data and more worker machines.

25

Figure 10: URL-LARGE and URL-EXTRA

5 Discussions

The simple observations and figures above show that our algorithm can scale in the presence

of more data and more worker machines. However, the scaling factor, which is at the best in

the SYN-DATA-LARGE dataset, achieving 0.6 (5.5 speedup with 9 worker machines), is still

relatively small. In this section we discuss some of the issues that might have caused this problem

and possible improvements. In the mean time, we further discuss in details about the results

obtained in the experiments section.

5.1 Load Balancing and Data Heterogeneity

In a distributed computing setting, it is usually assumed that computing nodes are homogeneous

in their capability. But this assumption is easily violated in a real-world setting where the users

only communicate with the resource manager to negotiate computing resources for their jobs. It

is possible that the some machines are running several different tasks submitted by different users

while others are mostly idle, thus violating the nodes homogeneity assumptions. This heterogeneity

not only affects the available computing performances at run-time but also the amount of data

handled by each worker machine. Since Husky adopts a Master-Slave cluster architecture, during

run time the Slave machine sends a request to the Master requesting locations of input data

26

and the Master responds with the block location in HDFS[9]. Thus if a worker machine is slow,

then it may acquire far less data compared to other worker machines. For examples, in our

experiments, it is observed that some slow workers can have as high as 25% less data than the

worker machines holding the most data. Therefore, the difference of amount of data processed by

each worker machine and the loading status of each worker machine causes the ”stragglers” [23]

in our experiments, which in turn hurts the scalability performance of our algorithm. Another

issues that affect the scaling factor of our algorithm is the inherent heterogeneity of the input data.

Intuitively, for a SVM problem, some samples, which at the optimum correspond to the ”Support

Vectors” are harder to optimize and some samples, which at the optimum have zero-weight in

the α, are easier to optimize. This is evident from the fact that the scaling factor is at the best

on the SYN-DATA-LARGE dataset. Intuitive this is so because the SYN-DATA-LARGE

dataset is generated by a uniform distribution and each sample is relatively identical to each other

and URL and RCV1 are real world datasets, which contain more realistic and extreme cases.

While the second issue is related to the input data and may not be easily solved without further

preprocessing of the data, the first issue can be alleviated by doing a load balancing between

different workers before running the DFGM algorithm. In particular, we can make use of the

Migrate Channel in Husky to allow highly loaded worker machines to offload some of the samples

to less-loaded worker machines. By doing load balancing, we can better utilize the computing

resources available and bridging the gap between normal workers and the ”stragglers”, thereby

reducing the average waiting time during the communication procedure.

5.2 Number of worker machines

From the right picture of Figure 7-9 we can see that approximately it takes two times or even

three times amount of worker machines to reduce the training time to half on RCV1 and URL-

SMALL datasets when compared to DFGM-1. In particular, we can observe that DFGM-10 is

worse than DFGM-6 on the URL-SMALL dataset. To understand why this is so, we refer the

readers to table 3 where it can be seen from the first row of the table that DFGM-10 spends

40% of the time in communication, which is a clear indication that with only 159,745 samples

in the URL-SMALL dataset, having 10 worker machines in the cluster is an overkill and hurts

the performance. Furthermore, we can see from RCV1, SYN-DATA-LARGE, URL-LARGE

and URL-EXTRA, which has more samples than URL-SMALL, that the speedup curve gets

steeper as we increase the number of samples in the data given the same number of worker

27

machines. Thus the lesson learned is that when running a distributed machine learning algorithm

where communication through network is frequent and unavoidable, we need to tune the number

of worker machines according to the size of the input data rather than blindly increasing the

number of worker machines in the cluster.

5.3 SVM-Solver

From the comparisons between FGM and DFGM-K, we can see that our distributed algorithm

running on only one machine, performs extremely well when compared to FGM. We investigate

into this problem and find out that the difference of performance is due to the differences of the

SVM solver that these two methods use. In particular, FGM uses DCD-SVM, which circularly

goes through the training dataset and use projected gradient information to update the Lagrange

multiplier αi until all the αis are at optimum, at which point the projected gradient vanishes

to a zero vector. In comparison, DFGM uses BQO-SVM, which also circularly goes through the

training dataset but considers second order approximation. For convergence criterion, BQO-SVM

stops when the first order term of the Taylor series expansion of the objective function with respect

to α becomes greater than 0. Although each iteration of BQO-SVM is slower due to the use of

second order approximation, we find out in our experiments that BQO-SVM usually takes far less

iterations to converge when compared to DCD-SVM. For example, DCD-SVM takes 72 iterations,

totaling 50 seconds to converge and achieve a classification accuracy of 97.74% on the testing set.

In comparison, BQO-SVM takes only 2 iterations, totaling 8 seconds to converge on a solution

that yields classification accuracy of 97.41% on the testing set. From this example, we can see

that DCD-SVM actually spends a majority of the training time achieving a solution that is not

significantly better than the one found by BQO-SVM. Since the SimpleMKL algorithm performs

several steps of searching of the parameter using the SVM solver in each iteration, sometimes the

solution returned from the solver may simply be discarded due to some other constraints. Thus

the problem of the DCD-SVM solver gets magnified during the many iterations of the SimpleMKL

algorithm. Therefore, it may not be a good idea to spend too much computational resources in

finding a solution that brings very little or maybe no returns and this explains why DFGM-1

performs much better than FGM in our experiment. Although it is not done in this report, this

problem can be avoided if we modify the solver to use relative changes in the objective values as

a stopping criterion.

28

5.4 Trade-off between Communication and Local Computation

As mentioned in section 3.2.1, each iteration of BQO-SVM involves solving a local SVM problem

using the DCD-SVM solver and a communication procedure to synchronize with other worker

machines. Thus there is a trade-off between communication cost and local computational cost.

If we allow the DCD-SVM more time to find a better solution, then the communication cost

will be smaller. On the other hand, if we stop DCD-SVM prematurely, there may be more nois-

es/perturbations in our descent direction and the BQO-SVM algorithm will need more iteration to

converge, thus increasing the communication cost. Since for the datasets used in our experiments,

BQO-SVM typically takes a few iterations to converge, we set the maximum iteration for DCD-

SVM to 1 like the implementation given by [12], which yields faster convergence for BQO-SVM

but incurs more communication cost. A possible improvement should be to adopt a more general

stopping criterion for DCD-SVM by taking into consideration the maximum number of iterations,

the duality gap and the relative changes in the objective values. For tunning of the parameters

for the general stopping criterion, we can sample a portion of the input data and list out a similar

table as table 3 to determine whether the training time is dominated by communication or by

local computation. If the training time is dominated by communication, we can impose a more

stringent stopping criterion for DCD-SVM and vice versa.

6 Conclusion

In this report, we propose a distributed algorithm to learn a Sparse SVM for feature selection on

high dimensional data. By introducing a 0-1 control variable, our method achieves the goal of

sparsity while being computationally efficient. The use of 0-1 control variable allows our algorithm

to be unaware of the number of features in the input data. By taking advantages of the linear

Kernel and cleverly caching important data, we design an efficient and scalable distributed solver

for the SVM problem with multiple linear kernels. Finally, by leveraging an efficient distributed

computing framework - Husky, and making an implementation choice that reduces the amount

of communication between workers, we only need to pay a communication cost that is linear in

the number of desired features to scale up the performance in the presence of large scale high

dimensional data.

29

References

[1] Andrew McAfee, Erik Brynjolfsson, Thomas H Davenport, DJ Patil, and Dominic Barton.

Big data. The management revolution. Harvard Bus Rev, 90(10):61–67, 2012.

[2] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal

of machine learning research, 3(Mar):1157–1182, 2003.

[3] Jason Weston, André Elisseeff, Bernhard Schölkopf, and Mike Tipping. Use of the zero-norm

with linear models and kernel methods. Journal of machine learning research, 3(Mar):1439–

1461, 2003.

[4] Paul S Bradley and Olvi L Mangasarian. Feature selection via concave minimization and

support vector machines. In ICML, volume 98, pages 82–90, 1998.

[5] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for

cancer classification using support vector machines. Machine learning, 46(1-3):389–422, 2002.

[6] Mingkui Tan, Ivor W Tsang, and Li Wang. Towards ultrahigh dimensional feature selection

for big data. Journal of Machine Learning Research, 15(1):1371–1429, 2014.

[7] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-

Cauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:

A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th

USENIX conference on Networked Systems Design and Implementation, pages 2–2. USENIX

Association, 2012.

[8] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: dis-

tributed data-parallel programs from sequential building blocks. In ACM SIGOPS Operating

Systems Review, volume 41, pages 59–72. ACM, 2007.

[9] Apache Hadoop. http://hadoop.apache.org/.

[10] Fan Yang, Jinfeng Li, and James Cheng. Husky: Towards a more efficient and expressive

distributed computing framework. Proceedings of the VLDB Endowment, 9(5):420–431, 2016.

[11] Mingkui Tan, Li Wang, and Ivor W Tsang. Learning sparse svm for feature selection on very

high dimensional datasets. In Proceedings of the 27th International Conference on Machine

Learning (ICML-10), pages 1047–1054, 2010.

30

[12] Ching-Pei Lee and Dan Roth. Distributed box-constrained quadratic optimization for dual

linear svm. In Proceedings of the 32nd International Conference on Machine Learning (ICML-

15), pages 987–996, 2015.

[13] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam Sun-

dararajan. A dual coordinate descent method for large-scale linear svm. In Proceedings of

the 25th international conference on Machine learning, pages 408–415. ACM, 2008.

[14] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory, pages 144–152. ACM, 1992.

[15] Bernhard Schiilkopf. The kernel trick for distances. Advances in neural information processing

systems, 13:301–307, 2001.

[16] Alain Rakotomamonjy, Francis R Bach, Stéphane Canu, and Yves Grandvalet. Simplemkl.

Journal of Machine Learning Research, 9(Nov):2491–2521, 2008.

[17] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur

Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi,

Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark: A unified engine for big data

processing. Commun. ACM, 59(11):56–65, October 2016.

[18] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh An-

thony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A warehousing solution over

a map-reduce framework. Proc. VLDB Endow., 2(2):1626–1629, August 2009.

[19] John Platt et al. Sequential minimal optimization: A fast algorithm for training support

vector machines. 1998.

[20] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM

Trans. Intell. Syst. Technol., 2(3):27:1–27:27, May 2011.

[21] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying suspicious

urls: An application of large-scale online learning. In Proceedings of the 26th Annual Inter-

national Conference on Machine Learning, ICML ’09, pages 681–688, New York, NY, USA,

2009. ACM.

31

[22] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear:

A library for large linear classification. Journal of machine learning research, 9(Aug):1871–

1874, 2008.

[23] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.

32

